
PerfFlowAspect Documentation
Release 0.1

Dong Ahn, Stephanie Brink, James Corbett, Stephen Herbein, Francesco Di Natale, Tapasya Patki

Nov 08, 2023

BASICS

1 Introduction 3

2 PerfFlowAspect Project Resources 5

3 Contributors 7

4 PerfFlowAspect Documentation 9
4.1 Basic Tutorial . 9
4.2 Release Information . 13
4.3 License Information . 13
4.4 Build Instructions . 16
4.5 Source Code Annotations . 17
4.6 Upcoming Features . 19
4.7 Developer’s Guide . 19

5 Indices and tables 21

i

ii

PerfFlowAspect Documentation, Release 0.1

PerfFlowAspect is a tool to analyze cross-cutting performance concerns of composite scientific workflows.

BASICS 1

PerfFlowAspect Documentation, Release 0.1

2 BASICS

CHAPTER

ONE

INTRODUCTION

High performance computing (HPC) researchers are increasingly introducing and composing disparate workflow-
management technologies and components to create scalable end-to-end science workflows. These technologies have
generally been developed in isolation and often feature widely varying levels of performance, scalability and interop-
erability. All things considered, optimizing the end-to-end workflow amidst those considerations is a highly daunting
task and thus it requires effective performance analysis techniques and tools.

Unfortunately, there still is a paucity of techniques and tools that can analyze the end-to-end performance of such a
composite workflow. While a myriad of analysis tools exist for traditional HPC programming paradigms (e.g., a single
application running at scale), there has been a lack of studies and tools to understand the effectiveness and efficiency
of this emerging workflow paradigm.

Enter PerfFlowAspect. It is a simple Aspect-Oriented Programming-based (AOP) tool that can cast a cross-cutting
performance-analysis concern or aspect across a heterogeneous set of components (e.g, combining Maestro and a
custom workflow pipeline with Flux along with microservices running on on-premises Kubernetes machines) used to
create a modern-day composite science workflow.

PerfFlowAspect will provide multi-language support, particularly for those most relevant in HPC workflows including
Python. It is designed specifically to allow researchers to weave the performance aspect into critical points of execution
across many workflow components without having to lose the modularity and uniformity as to how performance is
measured and controlled.

3

PerfFlowAspect Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER

TWO

PERFFLOWASPECT PROJECT RESOURCES

Online Documentation https://perfflowaspect.readthedocs.io/

Github Source Repo https://github.com/flux-framework/PerfFlowAspect.git

Issue Tracker https://github.com/flux-framework/PerfFlowAspect/issues

5

https://perfflowaspect.readthedocs.io/
https://github.com/flux-framework/PerfFlowAspect.git
https://github.com/flux-framework/PerfFlowAspect/issues

PerfFlowAspect Documentation, Release 0.1

6 Chapter 2. PerfFlowAspect Project Resources

CHAPTER

THREE

CONTRIBUTORS

• Dong H. Ahn (NVIDIA)

• Stephanie Brink

• James Corbett

• Stephen Herbein (NVIDIA)

• Aliza Lisan (University of Oregon)

• Daniel Milroy

• Francesco Di Natale (NVIDIA)

• Tapasya Patki

• Jae-Seung Yeom

• Hariharan Devarajan

7

PerfFlowAspect Documentation, Release 0.1

8 Chapter 3. Contributors

CHAPTER

FOUR

PERFFLOWASPECT DOCUMENTATION

4.1 Basic Tutorial

PerfFlowAspect is based on Aspect-Oriented Programming (AOP). PerfFlowAspect relies on annotated functions in
the user’s source code and can invoke specific performance-analysis actions, a piece of tracing code, etc. on those
points of execution. In AOP, these trigger points are called join points in the source code, and the functionality invoked
is called advice. To learn more about AOP and associated terminology, please refer to our presentation slides here.

The python package perfflowaspect contains the PerfFlowAspect tool for the Python language. The file src/
python/perfflowaspect/aspect.py contains a key annotating decorator. Users can use the @perfflowaspect.
aspect.critical_path() decorator to annotate their functions that are likely to be on the critical path of the work-
flow’s end-to-end performance. These annotated functions then serve as the join points that can be weaved with Perf-
FlowAspect to be acted upon. The decorator accepts the following pointcut values at the join points:

• before: The advice is invoked only before the join point.

• after: The advice is invoked only after the join point.

• around: The advice is invoked both before and after the join point.

The asynchronous versions of these pointcut values are also supported in PerfFlowAspect, which are: before_async,
after_async, and around_async.

Note: The default pointcut value is around.

The following shows a simple snippet that annotates two functions.

import perfflowaspect.aspect

@perfflowaspect.aspect.critical_path()
def bar(message):

time.sleep(1)
print(message)

@perfflowaspect.aspect.critical_path()
def foo():

time.sleep(2)
bar("hello")

def main():
foo()

9

PerfFlowAspect Documentation, Release 0.1

Once annotated, running this python code will produce a performance trace data file named perfflow.<hostname>.
<pid>. It uses Chrome Tracing Format in JSON so that it can be loaded into Google Chrome Tracing to render the
critical path events on the global tracing timeline, using the Perfetto visualization tool. Details on these can be found
at the links below:

• Chrome Tracing Tool: https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/

• Perfetto Visualizer: https://perfetto.dev/

To disable all PerfFlowAspect annotations, set the PERFFLOW_OPTIONS="log-enable=" to False at runtime.

PERFFLOW_OPTIONS="log-enable=False" ./test/smoketest.py

4.1.1 PerfFlowAspect CLI Options

PerfFlowAspect options can be set with the PERFFLOW_OPTIONS environment variable. Separate multiple variables
with a colon as follows:

PERFFLOW_OPTIONS="<var1>=<val1>:<var2>=<val2>" <executable>

Variable Description Default
Value

Supported Values

name Name of this workflow component generic
log-filename-
include

Customize name of log file host-
name,pid

name,instance-
path,hostname,pid

log-dir Directory where log file is created ./
log-enable Toggle annotations on/off True True, False
cpu-mem-usage Collect CPU and memory usage metrics False True, False
log-event Collect B and E events (verbose) or single X event

(compact)
Verbose Verbose, Compact

4.1.2 Visualization of PerfFlowAspect Output Files

There are two types of logging allowed in PerfFlowAspect trace files which are verbose and compact. Either can
be enabled by setting PERFFLOW_OPTIONS="log-event=" to compact or verbose, respectively. The logging is
verbose by default. Verbose logging uses B (begin) and E (end) events in the trace file as shown below:

[
{"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid":␣

→˓3134, "ts": 1679127184455376.0, "ph": "B"},
{"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid":␣

→˓3134, "ts": 1679127184456525.0, "ph": "B"},
{"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid":␣

→˓3134, "ts": 1679127184457610.0, "ph": "B"},
{"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid":␣

→˓3134, "ts": 1679127184457636.0, "ph": "E"},
{"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid":␣

→˓3134, "ts": 1679127184457657.0, "ph": "E"},
{"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid":␣

→˓3134, "ts": 1679127184457676.0, "ph": "E"},
...

]

10 Chapter 4. PerfFlowAspect Documentation

https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://perfetto.dev/

PerfFlowAspect Documentation, Release 0.1

The above trace file is generated for three functions with around pointcut annotations. The same trace file will be
reduced to half the lines with compact logging which uses a single X (complete) events, as can be seen below:

[
{"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 2688, "tid":␣

→˓2688, "ts": 1679127137181517.0, "ph": "X", "dur": 600.0},
{"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 2688, "tid":␣

→˓2688, "ts": 1679127137179879.0, "ph": "X", "dur": 2885.0},
{"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 2688, "tid":␣

→˓2688, "ts": 1679127137177783.0, "ph": "X", "dur": 5532.0},
...

]

The visualization of both types of logging in trace files will be the same in Perfetto UI. An example visualization is
shown below:

Fig. 1: Fig. 1: Visualization of a single process, single thread program in Perfetto UI

The visualization in Fig. 1 is of the following python program:

#!/usr/bin/env python

import time
import perfflowaspect
import perfflowaspect.aspect

@perfflowaspect.aspect.critical_path(pointcut="around")
def bas():

print("bas")

@perfflowaspect.aspect.critical_path(pointcut="around")
def bar():

(continues on next page)

4.1. Basic Tutorial 11

PerfFlowAspect Documentation, Release 0.1

(continued from previous page)

print("bar")
time.sleep(0.001)
bas()

@perfflowaspect.aspect.critical_path()
def foo(msg):

print("foo")
time.sleep(0.001)
bar()
if msg == "hello":
return 1

return 0

def main():
print("Inside main")
for i in range(4):

foo("hello")
return 0

if __name__ == "__main__":
main()

PerfFlowAspect also allows the user to log CPU and memory usage of annotated functions by setting
PERFFLOW_OPTIONS="cpu-mem-usage=" to True at runtime. The trace file, in that case, will have the following
structure with compact logging enabled:

[
{"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid

→˓": 44479, "ts": 1679184351167907.0, "ph": "C", "args": {"cpu_usage": 0.0, "memory_usage
→˓": 10944}},
{"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid

→˓": 44479, "ts": 1679184351168628.0, "ph": "C", "args": {"cpu_usage": 0.0, "memory_usage
→˓": 0}},
{"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid

→˓": 44479, "ts": 1679184351167907.0, "ph": "X", "dur": 721.0},
{"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid

→˓": 44479, "ts": 1679184351167127.0, "ph": "C", "args": {"cpu_usage": 11.
→˓980575694383594, "memory_usage": 10944}},
{"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid

→˓": 44479, "ts": 1679184351170287.0, "ph": "C", "args": {"cpu_usage": 0.0, "memory_usage
→˓": 0}},
{"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid

→˓": 44479, "ts": 1679184351167127.0, "ph": "X", "dur": 3160.0},
{"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid

→˓": 44479, "ts": 1679184351165193.0, "ph": "C", "args": {"cpu_usage": 98.
→˓625834450525915, "memory_usage": 14976}},
{"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid

→˓": 44479, "ts": 1679184351505085.0, "ph": "C", "args": {"cpu_usage": 0.0, "memory_usage
→˓": 0}},

(continues on next page)

12 Chapter 4. PerfFlowAspect Documentation

PerfFlowAspect Documentation, Release 0.1

(continued from previous page)

{"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid
→˓": 44479, "ts": 1679184351165193.0, "ph": "X", "dur": 339892.0},
...

]

Following is the visualization for the python program above with CPU and memory usage logging enabled:

Fig. 2: Fig. 2: Visualization of a single process, single thread program with CPU and memory usage

4.2 Release Information

NOTE: The interfaces are being actively developed and are not yet stable. The GitHub issue tracker is the primary way
to communicate with the developers.

4.3 License Information

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates

the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions
listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser

General Public License, and the “GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License,

4.2. Release Information 13

https://fsf.org/

PerfFlowAspect Documentation, Release 0.1

other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided

by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library
is deemed a mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an

Application with the Library. The particular version of the Library with which the Combined Work was made is also
called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the

Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that,
considered in isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the

object code and/or source code for the Application, including any data and utility programs needed for reproducing the
Combined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License

without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a

facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument
passed when the facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event
an Application does not supply the function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to
that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from

a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if
the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros,
inline functions and templates (ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and
that the Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,

taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work
and reverse engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it
and that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

14 Chapter 4. PerfFlowAspect Documentation

PerfFlowAspect Documentation, Release 0.1

c) For a Combined Work that displays copyright notices during execution, include the copyright
notice for the Library among these notices, as well as a reference directing the user to the copies
of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License,
and the Corresponding Application Code in a form suitable for, and under terms
that permit, the user to recombine or relink the Application with a modified ver-
sion of the Linked Version to produce a modified Combined Work, in the manner
specified by section 6 of the GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (a) uses at run time a copy of the Library already present on
the user’s computer system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such
information under section 6 of the GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the Combined Work produced by recom-
bining or relinking the Application with a modified version of the Linked Version. (If you use
option 4d0, the Installation Information must accompany the Minimal Corresponding Source
and Corresponding Application Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding
Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the

Library side by side in a single library together with other library facilities that are not Applications and are not covered
by this License, and convey such a combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library, un-
combined with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions

of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License “or any
later version” applies to it, you have the option of following the terms and conditions either of that published version
or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a
version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General
Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide

whether future versions of the GNU Lesser General Public License shall apply, that proxy’s public statement of accep-
tance of any version is permanent authorization for you to choose that version for the Library.

4.3. License Information 15

PerfFlowAspect Documentation, Release 0.1

4.4 Build Instructions

4.4.1 Python Install

The minimum Python version needed is 3.8. You can get PerfFlowAspect from its GitHub repository using this com-
mand:

$ git clone https://github.com/flux-framework/PerfFlowAspect

This will create a directory called PerfFlowAspect.

To use PerfFlowAspect, you will need to update your PYTHONPATH with the path to the PerfFlowAspect python direc-
tory:

$ cd src/python
$ export PYTHONPATH=$PWD:$PYTHONPATH

4.4.2 C Build

Host Config Files

To handle build options, third-party library paths, and other environment-specific configurations, PerfFlowAspect relies
on CMake’s initial-cache file mechanism.

These initial-cache files are called host-config files in PerfFlowAspect, since we typically create a file for each platform
or specific system if necessary.

Example configuration files can be found in the host-configs/ directory. Assuming you are in a build/ directory,
you can call the host-config file as follows:

$ cmake -C host-configs/{config_file}.cmake ../

Build Dependencies and Versions

redhat ubuntu version
clang clang >= 6.0
llvm-devel llvm-dev >= 6.0
jansson-devel libjansson-dev >= 2.6
openssl-devel libssl-dev >= 1.0.2
cmake cmake >= 3.10
flex flex >= 2.5.37
bison bison >= 3.0.4
make make >= 3.82

16 Chapter 4. PerfFlowAspect Documentation

PerfFlowAspect Documentation, Release 0.1

Building PerfFlowAspect

PerfFlowAspect uses CMake and requires Clang and LLVM development packages as well as a jansson-devel pack-
age for JSON manipulation. It additionally requires the dependencies of our annotation parser code: i.e., flex and
bison. Note that LLVM_DIR must be set to the corresponding LLVM cmake directory which may differ across different
Linux distributions.

$ module load clang/10.0.1-gcc-8.3.1 (on LLNL systems only)
$ cd PerfFlowAspect/src/c
$ mkdir build && cd build
$ cmake -DCMAKE_CXX_COMPILER=clang++ ../
$ make (note: parallel make (make -j) not supported yet)

$ find . -print | grep lib # successful build produces 3 libraries
./build/parser/libperfflow_parser.so
./build/runtime/libperfflow_runtime.so
./build/weaver/weave/libWeavePass.so

4.5 Source Code Annotations

Users can annotate their workflow code to get end-to-end performance insights. Currently, three techniques are available
for this:

• Critical path annotation

• Synchronous events annotation

• Asynchronous events annotation

For critical path annotation, the user can provide pointcut and scope information for the annotated region. Currently,
valid pointcut values are before, after, around, before_async, after_async, and around_async. When no
pointcut is specified, the default assumption is around. We show an example of this below:

#!/usr/bin/python3

import time
import perfflowaspect
import perfflowaspect.aspect

@perfflowaspect.aspect.critical_path()
def foo(msg):

print("foo")
time.sleep(1)
if msg == "hello":

return 1
return 0

def main():
print("Inside main")
for i in range(4):

foo("hello")
(continues on next page)

4.5. Source Code Annotations 17

PerfFlowAspect Documentation, Release 0.1

(continued from previous page)

return 0

if __name__ == "__main__":
main()

For synchronous event annotation, the user can provide a pointcut, name, and category for the annotated region. Valid
pointcut values are before, after, and around. The name represents a way to identify the current function being
annotated, and the category can be a filename. An example of this is shown below:

#!/usr/bin/python3

import time
import os.path
from perfflowaspect import aspect

def foo():
aspect.sync_event("before", "foo", filename)
time.sleep(2)
print("hello")
aspect.sync_event("after", "foo", filename)

def main():
aspect.sync_event("before", "main", filename)
foo()
aspect.sync_event("after", "main", filename)

if __name__ == "__main__":
filename = os.path.basename(__file__)
main()

For asynchronous event annotation, the user can provide a pointcut, name, category, and scope for the annotated region.
An example of this is shown below with the help of futures and thread pools:

#!/usr/bin/python3

import os.path
import time
import logging
import threading
from perfflowaspect import aspect

from concurrent.futures import ThreadPoolExecutor
from time import sleep

pool = ThreadPoolExecutor(3)

def bar(message):
(continues on next page)

18 Chapter 4. PerfFlowAspect Documentation

PerfFlowAspect Documentation, Release 0.1

(continued from previous page)

aspect.async_event("before", "bar", filename)
sleep(3)
aspect.async_event("after", "bar", filename)
return message

def foo():
aspect.sync_event("before", "foo", filename)
time.sleep(2)
future = pool.submit(bar, ("hello"))
while not future.done():

sleep(1)
print(future.done())
print(future.result())
aspect.sync_event("after", "foo", filename)

def main():
foo()

if __name__ == "__main__":
filename = os.path.basename(__file__)
main()

4.6 Upcoming Features

Upcoming features include the ability to specify categories while tracing, a connector for Hatchet, and allow for col-
lection of other statistics, such as GPU utilization. Additionally, the team plans to provide examples of how various
benchmarks and workflows have been annotated with PerfFlowAspect. Please follow our GitHub issues page for learn-
ing about upcoming features, as well as for suggesting new features for PerfFlowAspect.

4.7 Developer’s Guide

This is a short developer guide for using the included development environment. We provide both a base container
for VSCode, and a production container with PerfFlowAspect you can use for application development outside of that.
This is done via the .devcontainer directory. You can follow the DevContainers tutorial where you’ll basically need to:

1. Install Docker, or compatible engine

2. Install the Development Containers extension

Then you can go to the command palette (View -> Command Palette) and select Dev Containers: Open
Workspace in Container. and select your cloned PerfFlowAspect repository root. This will build a development
environment. You are free to change the base image and rebuild if you need to test on another operating system! When
your container is built, when you open Terminal -> New Terminal you’ll be in the container, which you can tell
based on being the “vscode” user. You can then proceed to the sections below to build and test PerfFlowAspect.

Important the development container assumes you are on a system with uid 1000 and gid 1000. If this isn’t the
case, edit the .devcontainer/Dockerfile to be your user and group id. This will ensure changes written inside
the container are owned by your user. It’s recommended that you commit on your system (not inside the container)

4.6. Upcoming Features 19

https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers#_create-a-devcontainerjson-file
https://code.visualstudio.com/docs/remote/containers-tutorial

PerfFlowAspect Documentation, Release 0.1

because if you need to sign your commits, the container doesn’t have access and won’t be able to. If you find that you
accidentally muck up permissions and need to fix, you can run this from your terminal outside of VSCode:

$ sudo chown -R $USER .git/
and then commit

4.7.1 Installing PerfFlowAspect

Once inside the development environment, you can compile PerfFlowAspect:

export PATH=/usr/local/cuda-12.1/bin/:$PATH
cd src/c
mkdir build
cd build
cmake -DCMAKE_CXX_COMPILER=clang++ -DLLVM_DIR=/usr/lib/llvm-10/cmake ..
make
sudo make install

If you want to run tests, cd to where the tests are, and run a few!

cd src/c/build/test
./t0001-cbinding-basic.t

Note that if you don’t have a GPU, these probably will error (I do not)! Here is how to run Python tests:

cd src/python/test
./t0001-pybinding-basic.t

You’ll again have issues without an actual GPU. And that’s it! Note that we will update this documentation as we create
more examples.

20 Chapter 4. PerfFlowAspect Documentation

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

21

	Introduction
	PerfFlowAspect Project Resources
	Contributors
	PerfFlowAspect Documentation
	Basic Tutorial
	PerfFlowAspect CLI Options
	Visualization of PerfFlowAspect Output Files

	Release Information
	License Information
	Build Instructions
	Python Install
	C Build
	Host Config Files
	Build Dependencies and Versions
	Building PerfFlowAspect

	Source Code Annotations
	Upcoming Features
	Developer’s Guide
	Installing PerfFlowAspect

	Indices and tables

