

PerfFlowAspect

PerfFlowAspect is a tool to analyze cross-cutting performance concerns of
composite scientific workflows.

Introduction

High performance computing (HPC) researchers are increasingly introducing and
composing disparate workflow-management technologies and components to create
scalable end-to-end science workflows. These technologies have generally been
developed in isolation and often feature widely varying levels of performance,
scalability and interoperability. All things considered, optimizing the
end-to-end workflow amidst those considerations is a highly daunting task and
thus it requires effective performance analysis techniques and tools.

Unfortunately, there still is a paucity of techniques and tools that can analyze
the end-to-end performance of such a composite workflow. While a myriad of
analysis tools exist for traditional HPC programming paradigms (e.g., a single
application running at scale), there has been a lack of studies and tools to
understand the effectiveness and efficiency of this emerging workflow paradigm.

Enter PerfFlowAspect. It is a simple Aspect-Oriented Programming-based (AOP)
tool that can cast a cross-cutting performance-analysis concern or aspect across
a heterogeneous set of components (e.g, combining Maestro and a custom workflow
pipeline with Flux along with microservices running on on-premises Kubernetes
machines) used to create a modern-day composite science workflow.

PerfFlowAspect will provide multi-language support, particularly for those most
relevant in HPC workflows including Python. It is designed specifically to allow
researchers to weave the performance aspect into critical points of execution
across many workflow components without having to lose the modularity and
uniformity as to how performance is measured and controlled.

PerfFlowAspect Project Resources

Online Documentation https://perfflowaspect.readthedocs.io/

Github Source Repo https://github.com/flux-framework/PerfFlowAspect.git

Issue Tracker https://github.com/flux-framework/PerfFlowAspect/issues

Contributors

	Dong H. Ahn (NVIDIA)

	Stephanie Brink

	James Corbett

	Stephen Herbein (NVIDIA)

	Aliza Lisan (University of Oregon)

	Daniel Milroy

	Francesco Di Natale (NVIDIA)

	Tapasya Patki

	Jae-Seung Yeom

	Hariharan Devarajan

PerfFlowAspect Documentation

Basics

	Basic Tutorial
	PerfFlowAspect CLI Options

	Visualization of PerfFlowAspect Output Files

	Release Information

	License Information

Reference

	Build Instructions
	Python Install

	C Build

	Source Code Annotations

	Upcoming Features

Contributing

	Developer’s Guide
	Installing PerfFlowAspect

Indices and tables

	Index

	Module Index

	Search Page

Basic Tutorial

PerfFlowAspect is based on Aspect-Oriented Programming (AOP). PerfFlowAspect
relies on annotated functions in the user’s source code and can invoke specific
performance-analysis actions, a piece of tracing code, etc. on those points of
execution. In AOP, these trigger points are called join points in the source
code, and the functionality invoked is called advice. To learn more about AOP
and associated terminology, please refer to our presentation slides here.

The python package perfflowaspect contains the PerfFlowAspect tool for the
Python language. The file src/python/perfflowaspect/aspect.py contains a key
annotating decorator. Users can use the
@perfflowaspect.aspect.critical_path() decorator to annotate their functions
that are likely to be on the critical path of the workflow’s end-to-end
performance. These annotated functions then serve as the join points that can be
weaved with PerfFlowAspect to be acted upon. The decorator accepts the following
pointcut values at the join points:

	before: The advice is invoked only before the join point.

	after: The advice is invoked only after the join point.

	around: The advice is invoked both before and after the join point.

The asynchronous versions of these pointcut values are also supported in
PerfFlowAspect, which are: before_async, after_async, and
around_async.

Note: The default pointcut value is around.

The following shows a simple snippet that annotates two functions.

import perfflowaspect.aspect

@perfflowaspect.aspect.critical_path()
def bar(message):
 time.sleep(1)
 print(message)

@perfflowaspect.aspect.critical_path()
def foo():
 time.sleep(2)
 bar("hello")

def main():
 foo()

Once annotated, running this python code will produce a performance trace data
file named perfflow.<hostname>.<pid>. It uses Chrome Tracing Format in JSON
so that it can be loaded into Google Chrome Tracing to render the critical path
events on the global tracing timeline, using the Perfetto visualization tool.
Details on these can be found at the links below:

	Chrome Tracing Tool:
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/

	Perfetto Visualizer: https://perfetto.dev/

To disable all PerfFlowAspect annotations, set the
PERFFLOW_OPTIONS="log-enable=" to False at runtime.

PERFFLOW_OPTIONS="log-enable=False" ./test/smoketest.py

PerfFlowAspect CLI Options

PerfFlowAspect options can be set with the PERFFLOW_OPTIONS environment
variable. Separate multiple variables with a colon as follows:

PERFFLOW_OPTIONS="<var1>=<val1>:<var2>=<val2>" <executable>

	Variable

	Description

	Default Value

	Supported Values

	name

	Name of this workflow component

	generic

	

	log-filename-include

	Customize name of log file

	hostname,pid

	name,instance-path,hostname,pid

	log-dir

	Directory where log file is created

	./

	

	log-enable

	Toggle annotations on/off

	True

	True, False

	cpu-mem-usage

	Collect CPU and memory usage metrics

	False

	True, False

	log-event

	Collect B and E events (verbose) or single X event (compact)

	Verbose

	Verbose, Compact

Visualization of PerfFlowAspect Output Files

There are two types of logging allowed in PerfFlowAspect trace files which are
verbose and compact. Either can be enabled by setting
PERFFLOW_OPTIONS="log-event=" to compact or verbose, respectively.
The logging is verbose by default. Verbose logging uses B (begin) and E
(end) events in the trace file as shown below:

[
 {"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid": 3134, "ts": 1679127184455376.0, "ph": "B"},
 {"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid": 3134, "ts": 1679127184456525.0, "ph": "B"},
 {"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid": 3134, "ts": 1679127184457610.0, "ph": "B"},
 {"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid": 3134, "ts": 1679127184457636.0, "ph": "E"},
 {"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid": 3134, "ts": 1679127184457657.0, "ph": "E"},
 {"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 3134, "tid": 3134, "ts": 1679127184457676.0, "ph": "E"},
 ...
]

The above trace file is generated for three functions with around pointcut
annotations. The same trace file will be reduced to half the lines with
compact logging which uses a single X (complete) events, as can be seen
below:

[
 {"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 2688, "tid": 2688, "ts": 1679127137181517.0, "ph": "X", "dur": 600.0},
 {"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 2688, "tid": 2688, "ts": 1679127137179879.0, "ph": "X", "dur": 2885.0},
 {"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest.cpp", "pid": 2688, "tid": 2688, "ts": 1679127137177783.0, "ph": "X", "dur": 5532.0},
 ...
]

The visualization of both types of logging in trace files will be the same in
Perfetto UI. An example visualization is shown below:

[image: _images/vis1.png]

Fig. 1: Visualization of a single process, single thread program in Perfetto UI

The visualization in Fig. 1 is of the following python program:

#!/usr/bin/env python

import time
import perfflowaspect
import perfflowaspect.aspect

@perfflowaspect.aspect.critical_path(pointcut="around")
def bas():
 print("bas")

@perfflowaspect.aspect.critical_path(pointcut="around")
def bar():
 print("bar")
 time.sleep(0.001)
 bas()

@perfflowaspect.aspect.critical_path()
def foo(msg):
 print("foo")
 time.sleep(0.001)
 bar()
 if msg == "hello":
 return 1
 return 0

def main():
 print("Inside main")
 for i in range(4):
 foo("hello")
 return 0

if __name__ == "__main__":
 main()

PerfFlowAspect also allows the user to log CPU and memory usage of annotated
functions by setting PERFFLOW_OPTIONS="cpu-mem-usage=" to True at
runtime. The trace file, in that case, will have the following structure with
compact logging enabled:

[
 {"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid": 44479, "ts": 1679184351167907.0, "ph": "C", "args": {"cpu_usage": 0.0, "memory_usage": 10944}},
 {"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid": 44479, "ts": 1679184351168628.0, "ph": "C", "args": {"cpu_usage": 0.0, "memory_usage": 0}},
 {"name": "bas", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid": 44479, "ts": 1679184351167907.0, "ph": "X", "dur": 721.0},
 {"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid": 44479, "ts": 1679184351167127.0, "ph": "C", "args": {"cpu_usage": 11.980575694383594, "memory_usage": 10944}},
 {"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid": 44479, "ts": 1679184351170287.0, "ph": "C", "args": {"cpu_usage": 0.0, "memory_usage": 0}},
 {"name": "bar", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid": 44479, "ts": 1679184351167127.0, "ph": "X", "dur": 3160.0},
 {"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid": 44479, "ts": 1679184351165193.0, "ph": "C", "args": {"cpu_usage": 98.625834450525915, "memory_usage": 14976}},
 {"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid": 44479, "ts": 1679184351505085.0, "ph": "C", "args": {"cpu_usage": 0.0, "memory_usage": 0}},
 {"name": "foo", "cat": "/PerfFlowAspect/src/c/test/smoketest3.cpp", "pid": 44479, "tid": 44479, "ts": 1679184351165193.0, "ph": "X", "dur": 339892.0},
 ...
]

Following is the visualization for the python program above with CPU and memory
usage logging enabled:

[image: _images/vis2.png]

Fig. 2: Visualization of a single process, single thread program with CPU and memory usage

Release Information

NOTE: The interfaces are being actively developed and are not yet stable. The
GitHub issue tracker is the primary way to communicate with the developers.

License Information

	GNU LESSER GENERAL PUBLIC LICENSE
	Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates

the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

	Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser

General Public License, and the “GNU GPL” refers to version 3 of the GNU
General Public License.

“The Library” refers to a covered work governed by this License,

other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided

by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an

Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the

Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the

object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

	Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License

without being bound by section 3 of the GNU GPL.

	Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a

facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

	Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from

a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license
document.

	Combined Works.

You may convey a Combined Work under terms of your choice that,

taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

	Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

	Combined Libraries.

You may place library facilities that are a work based on the

Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

	Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions

of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License “or any later version”
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide

whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

Build Instructions

Python Install

The minimum Python version needed is 3.8. You can get PerfFlowAspect from its
GitHub repository using this command:

$ git clone https://github.com/flux-framework/PerfFlowAspect

This will create a directory called PerfFlowAspect.

To use PerfFlowAspect, you will need to update your PYTHONPATH with the path
to the PerfFlowAspect python directory:

$ cd src/python
$ export PYTHONPATH=$PWD:$PYTHONPATH

C Build

Host Config Files

To handle build options, third-party library paths, and other
environment-specific configurations, PerfFlowAspect relies on CMake’s
initial-cache file mechanism.

These initial-cache files are called host-config files in PerfFlowAspect, since
we typically create a file for each platform or specific system if necessary.

Example configuration files can be found in the host-configs/ directory.
Assuming you are in a build/ directory, you can call the host-config file as
follows:

$ cmake -C host-configs/{config_file}.cmake ../

Build Dependencies and Versions

	redhat

	ubuntu

	version

	clang

	clang

	>= 6.0

	llvm-devel

	llvm-dev

	>= 6.0

	jansson-devel

	libjansson-dev

	>= 2.6

	openssl-devel

	libssl-dev

	>= 1.0.2

	cmake

	cmake

	>= 3.10

	flex

	flex

	>= 2.5.37

	bison

	bison

	>= 3.0.4

	make

	make

	>= 3.82

Building PerfFlowAspect

PerfFlowAspect uses CMake and requires Clang and LLVM development packages as
well as a jansson-devel package for JSON manipulation. It additionally
requires the dependencies of our annotation parser code: i.e., flex and
bison. Note that LLVM_DIR must be set to the corresponding LLVM cmake
directory which may differ across different Linux distributions.

$ module load clang/10.0.1-gcc-8.3.1 (on LLNL systems only)
$ cd PerfFlowAspect/src/c
$ mkdir build && cd build
$ cmake -DCMAKE_CXX_COMPILER=clang++ ../
$ make (note: parallel make (make -j) not supported yet)

$ find . -print | grep lib # successful build produces 3 libraries
./build/parser/libperfflow_parser.so
./build/runtime/libperfflow_runtime.so
./build/weaver/weave/libWeavePass.so

Source Code Annotations

Users can annotate their workflow code to get end-to-end performance insights.
Currently, three techniques are available for this:

	Critical path annotation

	Synchronous events annotation

	Asynchronous events annotation

For critical path annotation, the user can provide pointcut and scope
information for the annotated region. Currently, valid pointcut values are
before, after, around, before_async, after_async, and
around_async. When no pointcut is specified, the default assumption is
around. We show an example of this below:

#!/usr/bin/python3

import time
import perfflowaspect
import perfflowaspect.aspect

@perfflowaspect.aspect.critical_path()
def foo(msg):
 print("foo")
 time.sleep(1)
 if msg == "hello":
 return 1
 return 0

def main():
 print("Inside main")
 for i in range(4):
 foo("hello")
 return 0

if __name__ == "__main__":
 main()

For synchronous event annotation, the user can provide a pointcut, name, and
category for the annotated region. Valid pointcut values are before,
after, and around. The name represents a way to identify the current
function being annotated, and the category can be a filename. An example of this
is shown below:

#!/usr/bin/python3

import time
import os.path
from perfflowaspect import aspect

def foo():
 aspect.sync_event("before", "foo", filename)
 time.sleep(2)
 print("hello")
 aspect.sync_event("after", "foo", filename)

def main():
 aspect.sync_event("before", "main", filename)
 foo()
 aspect.sync_event("after", "main", filename)

if __name__ == "__main__":
 filename = os.path.basename(__file__)
 main()

For asynchronous event annotation, the user can provide a pointcut, name,
category, and scope for the annotated region. An example of this is shown below
with the help of futures and thread pools:

#!/usr/bin/python3

import os.path
import time
import logging
import threading
from perfflowaspect import aspect

from concurrent.futures import ThreadPoolExecutor
from time import sleep

pool = ThreadPoolExecutor(3)

def bar(message):
 aspect.async_event("before", "bar", filename)
 sleep(3)
 aspect.async_event("after", "bar", filename)
 return message

def foo():
 aspect.sync_event("before", "foo", filename)
 time.sleep(2)
 future = pool.submit(bar, ("hello"))
 while not future.done():
 sleep(1)
 print(future.done())
 print(future.result())
 aspect.sync_event("after", "foo", filename)

def main():
 foo()

if __name__ == "__main__":
 filename = os.path.basename(__file__)
 main()

Upcoming Features

Upcoming features include the ability to specify categories while tracing, a
connector for Hatchet, and allow for collection of other statistics, such as GPU
utilization. Additionally, the team plans to provide examples of how various
benchmarks and workflows have been annotated with PerfFlowAspect. Please follow
our GitHub issues page for learning about upcoming features, as well as for
suggesting new features for PerfFlowAspect.

Developer’s Guide

This is a short developer guide for using the included development environment.
We provide both a base container for VSCode [https://code.visualstudio.com/docs/remote/containers], and a production
container with PerfFlowAspect you can use for application development outside of
that. This is done via the .devcontainer [https://code.visualstudio.com/docs/remote/containers#_create-a-devcontainerjson-file]
directory. You can follow the DevContainers tutorial [https://code.visualstudio.com/docs/remote/containers-tutorial] where you’ll
basically need to:

	Install Docker, or compatible engine

	Install the Development Containers extension

Then you can go to the command palette (View -> Command Palette) and select
Dev Containers: Open Workspace in Container. and select your cloned
PerfFlowAspect repository root. This will build a development environment. You
are free to change the base image and rebuild if you need to test on another
operating system! When your container is built, when you open Terminal -> New
Terminal you’ll be in the container, which you can tell based on being the
“vscode” user. You can then proceed to the sections below to build and test
PerfFlowAspect.

Important the development container assumes you are on a system with uid
1000 and gid 1000. If this isn’t the case, edit the .devcontainer/Dockerfile
to be your user and group id. This will ensure changes written inside the
container are owned by your user. It’s recommended that you commit on your
system (not inside the container) because if you need to sign your commits, the
container doesn’t have access and won’t be able to. If you find that you
accidentally muck up permissions and need to fix, you can run this from your
terminal outside of VSCode:

$ sudo chown -R $USER .git/
and then commit

Installing PerfFlowAspect

Once inside the development environment, you can compile PerfFlowAspect:

export PATH=/usr/local/cuda-12.1/bin/:$PATH
cd src/c
mkdir build
cd build
cmake -DCMAKE_CXX_COMPILER=clang++ -DLLVM_DIR=/usr/lib/llvm-10/cmake ..
make
sudo make install

If you want to run tests, cd to where the tests are, and run a few!

cd src/c/build/test
./t0001-cbinding-basic.t

Note that if you don’t have a GPU, these probably will error (I do not)! Here is
how to run Python tests:

cd src/python/test
./t0001-pybinding-basic.t

You’ll again have issues without an actual GPU. And that’s it! Note that we will
update this documentation as we create more examples.

Index

 nav.xhtml

 Table of Contents

 		
 PerfFlowAspect

 		
 Basic Tutorial

 		
 PerfFlowAspect CLI Options

 		
 Visualization of PerfFlowAspect Output Files

 		
 Release Information

 		
 License Information

 		
 Build Instructions

 		
 Python Install

 		
 C Build

 		
 Host Config Files

 		
 Build Dependencies and Versions

 		
 Building PerfFlowAspect

 		
 Source Code Annotations

 		
 Upcoming Features

 		
 Developer’s Guide

 		
 Installing PerfFlowAspect

_static/file.png

_images/vis2.png
A Process 42299

Thread 42299

bar cpu_usage
bar memory_usage
bas cpu_usage
bas memory_usage

foo cpu_usage

RNRURURURURY

foo memory_usage

;

CPU and memory
usage for functions
in the process

2%
| e e I
25K
| | |]
0
== | 1 _ 1 _ 1 1T 71T """ 1 7"¥ " /O
s I S N v N A SO i | S S - N
25
11 1 I 1 [
25K
1| | 1| 1 [

Memory usage bar
for foo function

_static/minus.png

_static/plus.png

_images/vis1.png
Zoom in and out along
the timeline using this

Program timeline\) s 0hs s ‘ o1 ‘

A Process 2688

Thread 2688
\ Process ID
Thread ID Color coded function

calls with starting and
ending timestamps

